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Abstract

An alternative new method called lattice Boltzmann method (LBM) is applied in this work to simulate the flows in

Czochralski crystal growth, which is one of the widely used prototypical systems for melt-crystal growth. The standard

LBM can only be used in Cartesian coordinate system and we extend it to be applicable to this axisymmetric thermal

flow problem, avoiding the use of three-dimensional LBM on Cartesian coordinate system. The extension is based on

the following idea. By inserting position and time dependent source terms into the evolution equation of standard

LBM, the continuity and NS equations on the cylindrical coordinate system [1] can be recovered. Our extension is

validated by its application to the benchmark problem suggested by Wheeler [2].

� 2003 Elsevier Science B.V. All rights reserved.

1. Introduction

The single crystals form the foundation of modern technology. They are needed for scientific appraisal of

crystallography, topography and tensor properties of all crystalline materials. Basically, there are three

major prototypical systems for melt-crystal growth, namely, Czochralski growth; vertical Bridgman

growth; and floating-zone growth. Among them, the Czochralski technique has been widely used. The
modeling and understanding of heat and mass transfer for this flow have become an important issue in the

optimization of the Czochralski technique in order to grow more uniform and better-quality crystals.

The combination of natural convection due to thermal gradients between the crystal and crucible and

forced convection due to rotation of the crystal and the crucible makes the problem very complex in

terms of thermodynamics and hydrodynamics. Several numerical methods have been developed to sim-

ulate such crystal growth flow problems [3–9], which all solve the conventional NS equations. The dis-

cretization of the convection terms in NS equations is very important for the numerical simulation of
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such flow and it is common to choose the second-order central difference scheme. However, with the

increase of heat conduction or rotations of crystal and crucible, which is required in the Czochralski

growth technique in order to grow larger with less imperfection crystals, the convection terms in the flow

equations become dominant. This makes the second-order central difference scheme be unsuitable due to

enhanced numerical instability. This problem has been reported by Xu et al. [9]. They found that the use

of the central difference scheme failed to provide converged solution at high Grashof and Reynolds

numbers. In order to improve the stability condition, low-order upwind scheme has to be used, but its

high numerical diffusive properties may give rise to less accurate solution. Considering the discretization
problem for the convection terms happened in conventional methods, we use a relatively new numerical

technique called lattice Boltzmann method (LBM) [10] to simulate such kind of crystal growth problem.

This method is based on the concepts from kinetic theory, but it does not simulate individual particle

motion like particle-based methods such as Molecular Dynamics or Direct Simulation Monte Carlo.

Although detailed particle simulations can recover NS behavior in the continuum limit, they are too

expensive to use. On the contrary, LBM can also recover NS behavior but it incorporates a simpler,

probabilistic model of particle motion. This makes it much easier to compute. The kinetic nature of LBM

introduces some important features that distinguish it from other conventional numerical methods. One
of these is that the convection operator of LBM in phase space is linear, which will be shown in the

following section. So there is no need to do any discretization for this convection term and the above-

mentioned discretization difficulty for the convection terms can be avoided.

As we know, the standard LBM is based on the Cartesian coordinate system and has the essential

restriction on the lattice uniformity, since all the lattice models are defined on the Cartesian coordinates

and the standard LBM will recover the continuity and NS equations in the Cartesian coordinate system

by Chapman–Enskog expansion. This will be described in the following section. However, Czochralski

crystal growth is an axisymmetric flow which is a quasi-three-dimensional problem for the conventional
NS solvers in the cylindrical coordinate system, since there is no change for any variable in the azi-

muthal direction. If we use the standard LBM, we can only use the Cartesian coordinate system to solve

such kind of cylindrical flow problems, which means that we have to use the three-dimensional lattice

model to solve the real three-dimensional problems, which complicate the problem as compared with the

conventional NS solvers. In order to avoid such complication, we propose a new LBM scheme, which

inserts the position and time dependent source terms into the evolution equation of the standard LBM,

and makes it recover the continuity and NS equations on the cylindrical coordinate system by Chap-

man–Enskog expansion. This new scheme is based on the idea proposed by Halliday et al. [1] in 2001,
and it has the following good features. Like conventional CFD solvers, it solves the quasi-three-di-

mensional problem instead of the real three-dimensional problem for an axisymmetric flow. At the same

time, it is applied on a uniform rectangular grid in the cylindrical coordinate system, which adheres to

the inherit property of LBM. The curved boundary can also be well defined using the uniform rect-

angular grid.

The Wheeler benchmark problem [2] in Czochralski crystal growth is taken as the test example to

validate our new scheme. The numerical results will be compared with available data of Shu et al. [8] using

DQ method and Xu et al. [9] using Quick scheme.

2. Wheelers benchmark problem

The Wheeler benchmark problem for Czochralski crystal growth is shown in Fig. 1. It consists of

a vertical cylindrical crucible of radius Rc filled with a melt to a height H and rotating with an angular

velocity Xc. The melt is bounded above by a coaxial crystal of radius Rx < Rc rotating with angular

velocity Xx.
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This problem is solved under the assumption that the flow is axisymmetric, so the governing equations in

the cylindrical coordinate system can be written as
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u, v and w are radial, azimuthal and axial velocity components; p is the pressure; T is the temperature; t is
the kinetic viscosity; g is the gravitational acceleration; k is the thermal conductivity; q is the density of the

melt and cp is the specific heat at constant pressure.
The boundary conditions for this flow problem are given by

u ¼ v ¼ ow
or

¼ oT
or

¼ 0 for r ¼ 0; 06 z6 a; ð2aÞ

u ¼ w ¼ 0; v ¼ XcRc; T ¼ Tc for r ¼ 1; 06 z6 a; ð2bÞ

Fig. 1. The configuration of Czochralski crystal growth.
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u ¼ w ¼ oT
oz
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Rc

; b ¼ Rx

Rc

:

The non-dimensional parameters: Reynolds numbers, Prandtl and Grashof numbers are defined, respec-

tively, as

Rex ¼
R2
cXx

t
; Rec ¼

R2
cXc

t
; Pr ¼ qtcp

k
; Gr ¼ gb Tc � Txð ÞR3

c

t2
: ð3Þ

In the present study, the aspect ratios and the Prandtl number are fixed at

a ¼ 1; b ¼ 0:4; Pr ¼ 0:05: ð4Þ

3. Mathematical model

3.1. Standard lattice Boltzmann method (LBM)

Using LBM, the continuity and NS equations are not solved directly. Instead, a lattice Boltzmann

equation is formulated such that the hydrodynamics satisfies the correct continuity and NS equations by

Chapman–Enskog expansion. The flow problem is solved in terms of particle distribution function, fa. The

quantity of faðx; t; eÞ relates to the probability of finding a particle in the vicinity of x at time t that is

moving with velocity ea. Unlike the continuous particle distribution function in kinetic theory, fa is defined

only for a fixed set of velocities denoted by the subscript a and the lattice model is usually defined on the

Cartesian coordinate system. Take the two-dimensional case as an example. The evolution equation for the

standard LBM is as follows:

fa x
�

þ deax; y þ deay ; t þ d
�
� fa x; y; tð Þ ¼ � 1

s
faðx; y; tÞ
�

� f eq
a ðx; y; tÞ

�
; ð5Þ

where s is the single relaxation time, which characterizes the rate of decay toward equilibrium; fa is the

distribution function along the a direction; f eq
a is its corresponding equilibrium state, which is the distri-

bution to which the system will evolve in the absence of forcing gradients; d is the time step and eaðeax; eayÞ is
the particle velocity in the a direction.

Starting from an initial state, the configuration of particles at each time step evolves in two sequential

sub-steps: streaming and collision. During the streaming process, each particle moves to the nearest node in

the direction of its velocity, so this process in phase space is linear, which contrasts with the nonlinear
convection terms in other approaches that use a macroscopic representation. Obviously, there is no need to

do the discretization for this convection term. So the problems caused by the discretization of the con-

vection terms in NS equations can be avoided. Also from this streaming process, we can see the essential
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restriction of the standard LBM to the lattice-uniformity. Suppose that a particle is initially at the grid

point ðx; y; tÞ. Along the a direction, this particle will stream to the position ðxþ eaxd; y þ eayd; t þ dÞ. In the
numerical simulation, only the distribution function at the mesh points for all the time levels are needed, so

that the macroscopic properties such as the density, flow velocity and temperature can be evaluated at every

mesh point. This will require the uniformity of the lattice with dx ¼ eaxd; dy ¼ eayd. During the collision

process, particles arriving at a node interact and change their velocity directions according to scattering

rules. Simple convection combined with a collision process allows the recovery of the nonlinear macro-

scopic advection through multi-scale expansions.
The macroscopic density q and momentum density qV are calculated from moments of the particle

distribution in direct analogy with the integral moments from kinetic theory. They are defined as

q ¼
XN
a¼0

fa; qV ¼
XN
a¼0

faea: ð6Þ

The continuity and NS equations can be recovered by performing a Taylor series expansion of the

particle distribution function (5) about the location ðx; yÞ and time t, and a near equilibrium expansion. The

detailed information about this process is given by Hou et al. [11]. By doing the above-mentioned Chap-

man–Enskog expansion, the following equations on Cartesian coordinate system can be recovered:
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From Eqs. (7a) and (7b), we can see that the continuity and NS equations recovered by Chapman–

Enskog expansion are for the Cartesian coordinate system.

However, the above-mentioned crystal growth flow is an axisymmetric problem defined on the cylin-

drical coordinate system. If we solve it on the Cartesian coordinate system, we have to solve the real three-

dimensional problem using three-dimensional lattice model, which makes the problem more complex as

compared with the conventional methods. Furthermore, when the uniform grid is used, the curved

boundary cannot be accurately represented. We should find a way to transform the standard LBM to some
specific form with which the Chapman–Enskog expansion would recover the continuity and NS equations

on the cylindrical coordinate system.

3.2. Axisymmetric lattice Boltzmann model

Since the azimuthal coordinate and its derivatives vanish, there are only two coordinate variables: z and

r for an axisymmetric problem. In order to compare the governing equations on the cylindrical coordinate

system with those on two-dimensional Cartesian coordinate system, we make the following transformation.

By making the replacements ðz; rÞ ! ðy; xÞ, ðw; uÞ ! ðv; uÞ, ðvÞ ! ðwÞ, we can obtain a pseudo-Cartesian

representation for Eqs. (1a), (1b) and (1d)

ou
ox

þ ov
oy

¼ � u
x
; ð8aÞ
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where

r2 ¼ o2

ox2
þ o2

oy2
:

Compared with the real governing equations (7a)–(7c) on the Cartesian coordinate system, these equations

contain the additional terms which are underlined. We can consider them as the inertia forces from co-

ordinate transformation. As we know, with the Chapman–Enskog expansion, the standard LBM can re-

cover the continuity and NS equations in Cartesian coordinate system. If we consider the underlined terms

as the external forces, by inserting the position and time dependent forcing terms into the standard LBM

and following the same Chapman–Enskog expansion, we may recover Eqs. (8a)–(8c) by choosing the
proper forms of the external forcing terms.

As emphasized in [1], in order to model the departures from the equilibrium in corresponding to the

unadjusted LBGK scheme, there is no ‘‘equilibrium’’ for the external forcing terms and these external

forcing terms should be at least in OðdÞ. Incorporating such time, spatial and particle velocity dependent

force terms into the evolution equation of the standard LBM gives

fa x
�

þ deax; y þ deay ; t þ d
�
� fa x; y; tð Þ ¼ � 1

s
fa x; y; tð Þ
�

� f eq
a x; y; tð Þ

�
þ dGþ dF1 þ d2F2; ð9Þ

where G ¼ gbðT � TcÞj � ðe� VÞf eq is used to recover the buoyancy force in the governing equations [12].
Since the form of this force term is known, we only need to consider the force terms of F1 and F2.

The Taylor series expansion of Eq. (9) retaining terms up to Oðd2Þ results in
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The Chapman–Enskog expansion of the above Taylor expanded evolution equation plus the force terms

at OðdÞ and Oðd2Þ are
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The summation of Eq. (11a) and the summation of Eq. (11a) multiplied by ea give the continuity and Euler

equations

ot0q þr � qVð Þ ¼
X
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F1; ð12aÞ

ot0 qVð Þ þ r � Pð0Þ ¼
X

a
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a eaeaf eq
a .
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Compared with the convection part of Eqs. (8a)–(8c), we can getX
a

F1 ¼
�qu
x

; ð13aÞ
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The summation of Eq. (11b) and the summation of Eq. (11b) multiplied by ea are
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Eq. (14a) plus (12a) and (14b) plus (12b) should recover the continuity and NS Eqs. (8a)–(8c). So the

following relationships should be satisfied:
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During the derivation, the 9-bit particle model defined as
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0; a ¼ 0;
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is used, whose equilibrium distribution can be written as

f eq
a ¼ tpq 1

"
þ 3ea � V

c2
þ 9 ea � Vð Þ2

2c4
� 3V2

2c2

#
; ð16Þ

where tp ¼ 4=9 for a ¼ 0; tp ¼ 1=9 for a ¼ 1; 2; 3; 4; and tp ¼ 1=36 for a ¼ 5; 6; 7; 8.
The final forms of the external forces can be represented as

F1 ¼ tp F10
�

þ 3F11eax þ 3F12eay

�
; ð17aÞ

where F10 ¼ �qu=x, F11 ¼ qw2=x, F12 ¼ 0;
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F2 ¼ tp F20
�

þ 3F21eax þ 3F22eay
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By adding these force terms to the standard LBM, the governing Eqs. (8a)–(8c), which are the same as Eqs.

(1a), (1b) and (1d), can be correctly recovered on the cylindrical coordinate system by Chapman–Enskog

expansion.

Note that the form of the source terms is not unique. During the above derivation, F1 and F2 are de-
termined independently. The form of F1 can be used explicitly to determine an appropriate form for F2. It
can be seen clearly that Eqs. (8a)–(8c) and (17a), (17b) have singularity at x ¼ 0, which is the axisymmetric

line for the problem. Fortunately, this difficulty can be easily overcome by streaming process and imple-

menting the axisymmetric boundary condition at x ¼ 0. In other words, Eqs. (8a)–(8c) and (17a), (17b) are

only applied at position of x 6¼ 0.

Although the explicit inclusion of gradients to the standard LBM undermines the simple formulation of

the standard LBM, these terms are necessary to recover their target dynamics and the discretization scheme

of these gradients has no effect on the stability of the scheme itself. We can just use the simple central

difference scheme to do numerical discretization.
The azimuthal velocity and the temperature are obtained through the following equations by using first-

order forward difference scheme in time and second-order central difference scheme in space:
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where

r2 ¼ o2

ox2
þ o2

oy2
:

From the above derivation, it can be seen that after such transformation, the axisymmetric flow problem

on the cylindrical coordinate system can be solved on a uniform rectangular two-dimensional grid, which

adheres to the inherit property, lattice-uniformity, of LBM. The curved boundary can be well defined using

uniform rectangular grid. At the same time, it also avoids the solution of the real three-dimensional

problem on Cartesian coordinate system for such quasi-three-dimensional flow problem.

4. Non-dimensional parameters and boundary conditions

The system is normalized in the following way: the characteristic length is Rc; the characteristic velocity is

c ¼ dx=dt. The non-dimensional temperature is T 0 ¼ ðT � TxÞ=ðTc � TxÞ.
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The non-dimensional parameter s in Eq. (9) is determined by its relationship with the non-dimensional

kinetic viscosity s ¼ ð3t0Þ=dt þ 0:5. When the Reynolds number Rx is given, the non-dimensional kinetic

viscosity is obtained by t0 ¼ vx=ðRexbÞ; when the Gr is given, the non-dimensional kinetic viscosity is ob-

tained by t0 ¼ vh=
ffiffiffiffiffiffi
Gr

p
. vx and vh ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bgDTRc

p
are the non-dimensional velocity for the crystal at x ¼ Rx and

the non-dimensional characteristic velocity for the natural convection problem, respectively. To ensure the

code working properly in the near-incompressible regime, we carefully choose the value of vx and vh. They
are required to be less than 0.3. In the present study, they are chosen to be 0.1 at low Reynolds or Grashof

number and be 0.15 at high Reynolds or Grashof number.
The implementation of boundary condition is very important in the simulation. The unknown distri-

bution functions pointing into the fluid field at the boundary node must be specified. There are three

different kinds of boundary conditions in the Czochralski flow: the axisymmetric boundary condition, the

wall boundary condition and the free surface condition. For different boundary condition, the unknown

distribution functions have different relationship with the known distribution functions. Fig. 2 shows the

configuration of particle velocity directions at four boundaries.

For x ¼ 0, 06 y6 a, this is the axisymmetric boundary and the specular boundary condition is used.

After streaming process, the distributions at directions 2, 3, 4, 6, 7 are known which are determined by Eq.
(9). The unknown distributions at directions 1, 5, 8 can be determined from the following boundary

conditions:

f1 ¼ f3; f5 ¼ f6; f8 ¼ f7: ð19aÞ

For x ¼ 1, 06 z6 a, this is the wall boundary and the bounce back condition of the non-equilibrium

distribution is used [13]. After streaming process, the distributions at directions 1, 2, 4, 5, 8 are known

and the unknown distributions at directions 3, 6, 7 can be determined from the following boundary

conditions:

f3 ¼ f eq
3 þ f1 � f eq

1 ; f6 ¼ f eq
6 þ f8 � f eq

8 ; f7 ¼ f eq
7 þ f5 � f eq

5 : ð19bÞ

For z ¼ 0, 06 x6 1, this is also the wall boundary and the bounce back condition of the non-equilibrium

distribution is used. After streaming process, the distributions at directions 1, 3, 4, 7, 8 are known and the

unknown distributions at directions 2, 5, 6 can be determined from the following boundary conditions:

f2 ¼ f eq
2 þ f4 � f eq

4 ; f5 ¼ f eq
5 þ f7 � f eq

7 ; f6 ¼ f eq
6 þ f8 � f eq

8 : ð19cÞ

Fig. 2. Schematic plots of velocity directions at boundaries.
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For z ¼ a, b6 x6 1, this is the free surface and the specular boundary condition is used. After streaming

process, the distributions at directions 1, 2, 3, 5, 6 are known and the unknown distributions at directions 4,

7, 8 can be determined from the following boundary conditions:

f4 ¼ f2; f7 ¼ f6; f8 ¼ f5: ð19dÞ

For z ¼ a, 06 x6 b, we consider it as the wall boundary and the bounce back condition of the non-

equilibrium distribution is used. After streaming process, the distributions at directions 1, 2, 3, 5, 6 are

known and the unknown distributions at directions 4, 7, 8 can be determined from the following boundary

conditions:

f4 ¼ f eq
4 þ f2 � f eq

2 ; f7 ¼ f eq
7 þ f5 � f eq

5 ; f8 ¼ f eq
8 þ f6 � f eq

6 : ð19eÞ

5. Results and discussion

To validate the new scheme, the numerical simulation of Wheeler�s problem is chosen as a test case. In

this study, we firstly study how the forced convection and natural convection affect the flow fields differ-
ently. So we consider the following three cases A1, B1 and C1, which are defined as

A1 : Rex ¼ 100:; Rec ¼ 0:; Gr ¼ 0;

B1 : Rex ¼ 100:; Rec ¼ �25:0; Gr ¼ 0;

C1 : Rex ¼ 0:; Rec ¼ 0:; Gr ¼ 105:

Cases A1 and B1 are forced convection problems caused by different mechanics. The flow in Case A1 is

driven by the rotation of the crystal, while the flow in Case B1 is generated by opposite rotations of the

crystal and the crucible. Case C1 is a natural convection problem.

The mesh size used for these three cases is 101� 101. The convergence criterion for all the cases is

set to

max
X
i;j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu2i;j þ v2i;jÞ

nþ1
q���� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu2i;j þ v2i;jÞ

n
q ����6 10�8

and

max
X
i;j

wnþ1�� � wn
��6 10�8; max

X
i;j

T nþ1�� � T n
��6 10�8;

where n and nþ 1 represent the old and new time levels, respectively.

Table 1 shows the comparison of computed minimum and maximum stream functions for these three

cases with benchmark results. The stream function is computed through

Table 1

Comparison of computed minimum and maximum stream function for Cases A1, B1 and C1

Case Gr Rex Rec wmin (present) wmax (present) wmin (DQ [8]) wmax (DQ [8])

A1 0. 102 0. )0.221 5:46� 10�6 )0.222 5:46� 10�6

B1 0. 102 )25. )5.14�10�2 0.114 )6:81� 10�2 0.117

C1 105 0. 0. )5:18� 10�3 29.884 )7:50� 10�3 28.316
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ow
ox

¼ �xv;
ow
oy

¼ xu: ð20Þ

From Table 1, we can see that the maximum absolute value of stream function for each case agrees very

well with that computed by the DQ method [8], and the maximum difference is within 3%. There are some

deviations between the computed minimum absolute values of stream function. These deviations can be

considered to be negligible since the minimum absolute values are very small. The streamlines and iso-

therms for Cases A1, B1 and C1 are shown in Figs. 3–5.

Although the streamlines are quite different for Cases A1 and B1, the contours of temperature are very

similar. This indicates the similarity of the temperature fields for forced convection problems. On the
contrary, the temperature field for the Case C1 is quite different from Cases A1 and B1, and this shows the

effect of buoyancy force on the temperature field.

Since the natural convection has been well studied, while the forced convections draw less attention as

compared with the natural convection, we put the emphasis on the forced convection in the following study.

We study the influence of the rotations of the crystal and crucible on the forced convection problems, and

two more cases which have different rotation velocities are studied. They are defined as

A2 : Rex ¼ 1000; Rec ¼ 0; Gr ¼ 0;

B2 : Rex ¼ 1000; Rec ¼ �250; Gr ¼ 0:

The mesh size used for the study is 201� 201.

Fig. 3. Streamline and temperature contour of Case A1.

Fig. 4. Streamline and temperature contour of Case B1.
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Table 2 shows the comparison of computed minimum and maximum stream functions at different

rotations. The benchmark results using Quick scheme [9] are also included for validation.

From Table 2, we can see that the maximum absolute value of stream function for each case agrees very

well with the benchmark results.

For the Case A2, it can be seen from Table 2 that the absolute value of the stream function

increases with the increase of the rotation velocity, which means that the intensity of the vortex

increases. The maximum absolute stream function increases from 0.221 to 5.0575 when the ro-

tation velocity increases from 102 to 103. The streamlines and temperature contours are similar to
Case A1, which will not be repeated. The only difference for the streamlines is that the center of

the vortex induced by the rotation moves towards the sidewall of the crucible and is deformed

increasingly. The highest velocity region moves from the upper left corner to the upper right

corner. This shows that with the increase of the rotation velocity, better quality crystal can be

produced.

For the Case B2, it can be seen from Table 2 that the absolute value of the stream function also in-

creases with the increase of the rotation velocity. The streamlines and temperature contours are also

similar to Case B1. It can be seen from the streamlines that there are two vortices with opposite directions
appearing in the upper left corner just under the crystal and the lower right corner. This means that

the rotations of both crystal and crucible cannot produce good quality of crystal. With increase of the

rotational speeds of the crystal and crucible, the upper left vortex will move to the right corner, and

the lower vortex will move to the left and dominate the flow field.

6. Conclusions

The application of the new scheme to simulate the flow in Czochralski crystal growth demonstrates that

our new scheme could solve the axisymmetric thermal problem effectively. The numerical results compare

Table 2

Comparison of computed minimum and maximum stream function for Cases A1, A2, B1 and B2

Case Gr Rex Rec wmin (present) wmax (present) wmin (quick [9]) wmax (quick [9])

A1 0. 102 0. )0.221 5:46� 10�6 )0.217 4:06� 10�6

A2 0. 103 0. )5.075 1:06� 10�4 )4.994 1:83� 10�5

B1 0. 102 )25. )5:14� 10�2 0.114 )4:43� 10�2 0.117

B2 0. 103 )250. )1.478 1.114 )1.478 1.148

Fig. 5. Streamline and temperature contour of Case C1.
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well with those from NS solvers, and show that LBM provides a completely different way to solve the

crystal growth problem. It is worth to mention that our new scheme can solve the axisymmetric flow

problem on a uniform rectangular two-dimensional grid in the cylindrical coordinate system, avoiding the

solution of the real three-dimensional problem on Cartesian coordinate system if using the standard LBM.
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